If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3=-2t^2+1
We move all terms to the left:
-3-(-2t^2+1)=0
We get rid of parentheses
2t^2-1-3=0
We add all the numbers together, and all the variables
2t^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $
| x-(x*0.25)=258 | | 8-9g=-5g | | -8(x)=x^2 | | 5v=7v-8 | | -3z+1=(2z+4)(3z-6) | | 150+30x=420 | | 40−4y=39 | | 12k-15=3() | | 36+x^2=225 | | 6x+6x+6x=45 | | 14+5x=3(-x+-3)-11 | | a—8a—4a+11a+-15a=13 | | 8x−20=39 | | (3x-24)+x=180 | | 12k-15=3( | | Y=x+5x=10 | | 16x^2-64=120x | | 2z+-14z-9z+17z=12 | | 5b=225 | | 63=9x-2x | | -5x+10=11 | | 5(2x-8)=3(4x+6) | | (20)(x)=1540 | | 3(3y+1)=3(5y+2) | | 5x3-10=5 | | 2+3*4=x | | 10x+40=12x+18 | | 141+8+7x+12x=180 | | 5(2x–3)=80 | | 2x2+3x+4=0 | | 20x+40=25x+30 | | 9c+c-3c-2c-2c=9 |